Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
Europace ; 23(3): 345-352, 2021 03 08.
Article in English | MEDLINE | ID: covidwho-1343692

ABSTRACT

During the coronavirus 2019 (COVID-19) pandemic, outpatient visits in the atrial fibrillation (AF) clinic of the Maastricht University Medical Centre (MUMC+) were transferred into teleconsultations. The aim was to develop anon-demand app-based heart rate and rhythm monitoring infrastructure to allow appropriatmanagement of AF through teleconsultation. In line with the fundamental aspects of integrated care, including actively involving patients in the care process and providing comprehensive care by a multidisciplinary team, we implemented a mobile health (mHealth) intervention to support teleconsultations with AF patients: TeleCheck-AF. The TeleCheck-AF approach guarantees the continuity of comprehensive AF management and supports integrated care through teleconsultation during COVID-19. It incorporates three important components: (i) a structured teleconsultation ('Tele'), (ii) a CE-marked app-based on-demand heart rate and rhythm monitoring infrastructure ('Check'), and (iii) comprehensive AF management ('AF'). In this article, we describe the components and implementation of the TeleCheck-AF approach in an integrated and specialized AF-clinic through teleconsultation. The TeleCheck-AF approach is currently implemented in numerous European centres during COVID-19.


Subject(s)
Atrial Fibrillation/diagnosis , COVID-19 , Heart Conduction System/physiopathology , Heart Rate , Mobile Applications , Remote Consultation/instrumentation , Smartphone , Action Potentials , Atrial Fibrillation/physiopathology , Atrial Fibrillation/therapy , Delivery of Health Care, Integrated , Humans , Predictive Value of Tests , Reproducibility of Results
3.
J Cardiovasc Med (Hagerstown) ; 22(3): 197-203, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1133865

ABSTRACT

AIM: The aim of the current study was to evaluate P-wave dispersion (PWD) as a predictor of atrial fibrillation in patients with newly diagnosed COVID-19. In addition, the relationship between the PWD and inflammation parameters was investigated. METHODS: A total of 140 newly diagnosed COVID-19 patients and 140 age- and sex-matched healthy individuals were included in the study. The risk of atrial fibrillation was evaluated by calculating the electrocardiographic PWD. C-reactive protein (CRP), white blood cell, neutrophil and neutrophil-to-lymphocyte ratio (NLR) were measured in patients with newly diagnosed COVID-19. RESULTS: PWD, white blood cell, NLR and CRP levels were significantly higher in the COVID-19 group than the control group. There was a significant positive correlation between PWD and CRP level (rs = 0.510, P < 0.001) and NLR in COVID-19 group (rs = 0.302, P = 0.001). In their follow-up, 13 (9.3%) patients, 11 of whom were in the ICU, developed new atrial fibrillation. CONCLUSION: Our study showed for the first time in literature that the PWD, evaluated electrocardiographically in patients with newly diagnosed COVID-19, was prolonged compared with normal healthy individuals. A positive correlation was found between PWD, CRP level and NLR. We believe that pretreatment evaluation of PWD in patients with newly diagnosed COVID-19 would be beneficial for predicting atrial fibrillation risk.


Subject(s)
Action Potentials , Atrial Fibrillation/etiology , COVID-19/diagnosis , Electrocardiography , Heart Conduction System/physiopathology , Heart Rate , Adult , Aged , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/complications , COVID-19/physiopathology , Cross-Sectional Studies , Female , Humans , Lymphocyte Count , Lymphocytes , Male , Middle Aged , Neutrophils , Predictive Value of Tests , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors
4.
BMJ Case Rep ; 14(1)2021 Jan 18.
Article in English | MEDLINE | ID: covidwho-1066840

ABSTRACT

The ongoing SARS-CoV-2 (COVID-19) pandemic has presented many difficult and unique challenges to the medical community. We describe a case of a middle-aged COVID-19-positive man who presented with pulmonary oedema and acute respiratory failure. He was initially diagnosed with acute respiratory distress syndrome. Later in the hospital course, his pulmonary oedema and respiratory failure worsened as result of severe acute mitral valve regurgitation secondary to direct valvular damage from COVID-19 infection. The patient underwent emergent surgical mitral valve replacement. Pathological evaluation of the damaged valve was confirmed to be secondary to COVID-19 infection. The histopathological findings were consistent with prior cardiopulmonary autopsy sections of patients with COVID-19 described in the literature as well as proposed theories regarding ACE2 receptor activity. This case highlights the potential of SARS-CoV-2 causing direct mitral valve damage resulting in severe mitral valve insufficiency with subsequent pulmonary oedema and respiratory failure.


Subject(s)
COVID-19/complications , Mitral Valve Insufficiency/etiology , Acute Disease , Atrial Fibrillation/complications , Atrial Fibrillation/physiopathology , COVID-19/therapy , Chordae Tendineae/diagnostic imaging , Echocardiography , Electrocardiography , Heart Valve Prosthesis Implantation , Humans , Male , Middle Aged , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Insufficiency/physiopathology , Mitral Valve Insufficiency/surgery , Pulmonary Edema/etiology , Pulmonary Edema/physiopathology , Pulmonary Edema/therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , SARS-CoV-2 , Severity of Illness Index , Shock, Cardiogenic/etiology , Shock, Cardiogenic/physiopathology
5.
Int J Cardiovasc Imaging ; 37(5): 1539-1550, 2021 May.
Article in English | MEDLINE | ID: covidwho-1002114

ABSTRACT

During the COVID-19 pandemic, transesophageal echocardiography (TEE) for left atrial appendage thrombosis (LAAT) detection should be limited to situations of absolute necessity. We sought to identify the main conventional and functional echocardiographic parameters associated with LAAT on TEE in non-valvular atrial fibrillation (NVAF) patients planned for electrical cardioversion (ECV). This retrospective study included 125 consecutive NVAF patients (71.5±7.8 yrs, 75 males), who underwent TEE at our Institution between April 2016 and January 2020, to exclude LAAT before scheduled ECV. All patients underwent a transthoracic echocardiography (TTE) implemented with speckle tracking echocardiography (STE) analysis of left atrial (LA) strain and strain rate (SR) parameters. 28% of patients were diagnosed with LAAT, while 72% without LAAT. Compared to controls, patients with LAAT had significantly higher CHA2DS2-Vasc Score and average E/e' ratio, and significantly lower left ventricular ejection fraction (LVEF). Moreover, LA-peak positive global atrial strain (GSA+) and LA-SR parameters were significantly reduced in patients with LAAT. Multivariate logistic regression revealed that, differently from CHA2DS2-Vasc Score, LVEF (OR 0.88, 95%CI 0.81-0.97, p = 0.01), average E/e' ratio (OR 2.36, 95%CI 1.41-3.98, p = 0.001), and LA-GSA+ (OR 0.57, 95%CI 0.36-0-90, p = 0.01) were independently associated with LAAT. LA-GSA+ (optimal cut-off ≤ 9.1%, AUC 0.95) showed the highest diagnostic performance. Finally, a strong linear correlation of LA peak-to-peak SR with both LA appendage filling (r = 0.86) and emptying (r = 0.83) velocities was demonstrated. TTE implemented with STE analysis of LA mechanics improves thrombotic risk assessment of NVAF patients.


Subject(s)
Atrial Appendage/diagnostic imaging , Atrial Fibrillation/physiopathology , Risk Assessment , Thrombosis/diagnostic imaging , Aged , Atrial Appendage/physiopathology , Case-Control Studies , Echocardiography , Echocardiography, Transesophageal , Electric Countershock , Female , Humans , Male , Retrospective Studies , Stroke Volume/physiology , Thrombosis/physiopathology
7.
Eur Rev Med Pharmacol Sci ; 24(23): 12609-12622, 2020 12.
Article in English | MEDLINE | ID: covidwho-995022

ABSTRACT

OBJECTIVE: In human pathology, SARS-CoV-2 utilizes multiple molecular pathways to determine structural and biochemical changes within the different organs and cell types. The clinical picture of patients with COVID-19 is characterized by a very large spectrum. The reason for this variability has not been clarified yet, causing the inability to make a prognosis on the evolution of the disease. MATERIALS AND METHODS: PubMed search was performed focusing on the role of ACE 2 receptors in allowing the viral entry into cells, the role of ACE 2 downregulation in triggering the tissue pathology or in accelerating previous disease states, the role of increased levels of Angiotensin II in determining endothelial dysfunction and the enhanced vascular permeability, the role of the dysregulation of the renin angiotensin system in COVID-19 and the role of cytokine storm. RESULTS: The pathological changes induced by SARS-CoV-2 infection in the different organs, the correlations between the single cell types targeted by the virus in the different human organs and the clinical consequences, COVID-19 chronic pathologies in liver fibrosis, cardiac fibrosis and atrial arrhythmias, glomerulosclerosis and pulmonary fibrosis, due to the systemic fibroblast activation induced by angiotensin II are discussed. CONCLUSIONS: The main pathways involved showed different pathological changes in multiple tissues and the different clinical presentations. Even if ACE2 is the main receptor of SARS-CoV-2 and the main entry point into cells for the virus, ACE2 expression does not always explain the observed marked inter-individual variability in clinical presentation and outcome, evidencing the complexity of this disorder. The proper interpretation of the growing data available might allow to better classifying COVID-19 in human pathology.


Subject(s)
Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Cardiomyopathies/metabolism , Cytokine Release Syndrome/metabolism , Endothelium, Vascular/physiopathology , Liver Cirrhosis/metabolism , Systemic Inflammatory Response Syndrome/metabolism , Thrombosis/metabolism , Angiotensin I/metabolism , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Blood Coagulation , COVID-19/pathology , COVID-19/physiopathology , Capillary Permeability , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Cytokine Release Syndrome/physiopathology , Cytokines/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/physiopathology , Myocarditis/metabolism , Myocarditis/pathology , Myocarditis/physiopathology , Receptors, Coronavirus/metabolism , Renin-Angiotensin System , SARS-CoV-2/metabolism , Systemic Inflammatory Response Syndrome/physiopathology , Thrombosis/physiopathology , Virus Internalization
8.
Circ J ; 84(10): 1679-1685, 2020 09 25.
Article in English | MEDLINE | ID: covidwho-751078

ABSTRACT

The health crisis due to coronavirus disease 2019 (COVID-19) has shocked the world, with more than 1 million infections and casualties. COVID-19 can present from mild illness to multi-organ involvement, but especially acute respiratory distress syndrome. Cardiac injury and arrhythmias, including atrial fibrillation (AF), are not uncommon in COVID-19. COVID-19 is highly contagious, and therapy against the virus remains premature and largely unknown, which makes the management of AF patients during the pandemic particularly challenging. We describe a possible pathophysiological link between COVID-19 and AF, and therapeutic considerations for AF patients during this pandemic.


Subject(s)
Adrenergic beta-Antagonists/therapeutic use , Anti-Arrhythmia Agents/therapeutic use , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , Atrial Fibrillation/drug therapy , Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Angiotensin-Converting Enzyme 2 , Atrial Fibrillation/physiopathology , COVID-19 , Catheter Ablation/methods , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Cytokines/blood , Drug Interactions , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Risk , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL